
Coding for STEM:
Simulating falling objects

MAV'24
Dec 6, 2024 (Session H11 - 3.10pm)

Dr. Max Stephens - University of Melbourne
Prof. Sebastian Sardiña - RMIT University

BBC KS3

The four cornerstones of Computational Thinking

Also builds and support: confidence (lots of “aha” moments!), tenacity, communication skills,
curiosity, intentional attitude, growth mindset.

● Decomposition: Break down
complex problems; prevent from
becoming overwhelmed.

● Abstraction: Strip away
unnecessary details to see core
features.

● Pattern recognition: find
similarities, differences, trends,
repetitions.

● Algorithms: step-by-step process
to solve a problem or task.

https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1

Falling objects..

http://www.youtube.com/watch?v=yHu0Bt5aMSU
http://www.youtube.com/watch?v=HaGfboDkxBE
http://www.youtube.com/watch?v=pEpfM_bv5s8&t=10
http://www.youtube.com/watch?v=rm44SV8xUDo

This tutorial is not a sample lesson, but a list of meaningful self-contained steps that constitutes the STEM coding horizon for the teacher to guide
implementation. Each step may take multiple sessions.

Specific timeline will depend on: year level, experience with coding and Scratch, familiarity with STEM and mathematical ideas (e.g., variables and
equations).

1. Set-up the stage by placing ball (and background).

2. Drop ball at constant speed.

3. Hit floor and stop.

4. Added acceleration due to gravity.

5. Bounce back when hitting the floor.

6. Loss of energy when bouncing.

7. Extensions.

Break task down into key steps

1. Cartesian plane & coordinates (to place objects) - VC2M6N01

2. Positive & negative numbers (to represent direction, position).

3. Basic math operations (addition, multiplication, etc) - VC2M4N06.

4. Number comparison (e.g., greater than) - VC2M5N01

5. Boolean logical expressions (e.g., or, and).

6. Use of variables for modeling - VC2M4A01.

7. Proportion/percentage (to implement loss of energy) - VC2M5N04.

8. Decimal numbers - VC2M5N01.

9. Multiplying by -1 (to implement reversing of direction).

Mathematical components promoted

https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M6N01
https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M4N06
https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M5N01
https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M4A01
https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M5N04
https://victoriancurriculum.vcaa.vic.edu.au/Curriculum/ContentDescription/VC2M5N01

Scratch Coordinate system

Coding in Scratch Stage
Program

Statement
palette Sprites

https://scratch.mit.edu/projects/770606600/editor/

1. Create the code incrementally.
○ More demanding.
○ Several sessions depending on existing knowledge and skills.
○ Potentially higher-level of achievement.
○ Step-by-step tutorial provided here: https://bit.ly/3VcMNGx

2. Remix/modify existing code.
○ Full code provided by the teacher.
○ Students first understand the code.
○ Then, student modify code to achieve various objectives.

■ Different ball location.
■ Faster fall.
■ Less/more energy loss at bouncing.
■ Further abstraction (introduce new variables).
■ Fix existing bugs (maybe introduced by teacher in original code)

○ After re-mixing, students may create their code from zero.

Two ways to use the project

https://bit.ly/3VcMNGx

● Tutorial: https://bit.ly/3VcMNGx
● Final program:

○ https://scratch.mit.edu/projects/770606600/
● Scratch: https://scratch.mit.edu/
● Similar project: https://bit.ly/3GPrKn2

Resources from today's session

https://bit.ly/3VcMNGx
https://scratch.mit.edu/projects/770606600/
https://scratch.mit.edu/
https://bit.ly/3GPrKn2
https://bit.ly/3VcMNGx
https://bit.ly/3VcMNGx

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and
infographics & images by Freepik.

Thank
you!
Q & ASlides: https://bit.ly/mav22-fball

Questions? Comments? Suggestions? Share experiences?

Please contact us at:

● Sebastian Sardina: sebastian.sardina@rmit.edu.au

● Max Stephens: m.stephens@unimelb.edu.au

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://bit.ly/mav22-fball
mailto:-sebastian.sardina@rmit.edu.au
mailto:m.stephens@unimelb.edu.au

Python

Step by
step
tutorial

1. Set a ball in the upper-middle of the stage.
2. Naive (finte) fall.
3. Abstract ball's y-coordinate (variable bball_y).
4. Constant free fall (forever).
5. Add a backdrop.
6. Collision with floor (if ball_y = 80) - first try!
7. Collision with floor (if ball_y = 80) - works!
8. Abstract velocity (variable ball_acc).
9. Add acceleration (change ball_vel via ball_acc).

10. Perfect bouncing (multiplication by -1).
11. Add bouncing sound and rolling.
12. Model loss of energy at bounce (multiply by < -1).
13. Stabilize at floor.
14. Allow any initial location.
15. Abstract acceleration & floor.

Steps

1 - Set a ball in the upper-middle

2 - Naive (finite) fall

3 - Abstract ball's y-coordinate

4 - Constant free fall

5 - Add a backdrop

6 - Collision with floor - first try!

7 - Collision with floor - works!

8 Abstract velocity: bell_vel

9 - Acceleration: change velocity

10 - Bounce back (perfect bounce)

11 - Sound and roll…

12 - Loss of energy at bounce

13 - Stabalise at floor

14 - Any initial location

14 - Abstract acceleration & floor

